

APZ 3420 x

КОМПАКТНЫЙ ДАТЧИК ДАВЛЕНИЯ ВО ВЗРЫВОНЕПРОНИЦАЕМОЙ ОБОЛОЧКЕ EXD

ОПИСАНИЕ

Взрывозащищенный датчик давления АРZ 3420 х для применения в различных отраслях промышленности на основе сенсора с мембраной из нержавеющей стали с погрешностью от 0,1% от диапазона измерений. Полевой корпус имеет вид взрывозащиты взрывонепроницаемая оболочка.

ХАРАКТЕРИСТИКИ

Диапазоны давлений: от 0...40 мбар до 0...600 бар Измеряемое давление: избыточное, абсолютное

Основная погрешность: 0,25% ДИ

Выходные сигналы: 4...20 мА; 0...20 мА; 0...10 В; 0...5 В; HART®; RS-485 / Modbus RTU

Сенсор: кремниевый тензорезистивный

Механические присоединения: G1/2"; G1/4"; 1/2" NPT; 1/4" NPT; M20x1,5 и другие

Температура измеряемой среды: -40...+125 °C Температура окружающей среды: -40...+85 °C

Опция: с дисплеем

Взрывозащита 1Ex d IIC T6...T4 Gb X

ПРИМЕНЕНИЕ

Нефтепромысловое оборудование

Добыча нефти и газа

Газовые компрессоры

Нефтяные платформы

Внешний вид, комплектация и/или технические характеристики продукции могут быть изменены производителем без предварительного уведомления. Продукция поставляется в соответствии со стандартными условиями поставки. © 2022 ООО "Пьезус"

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

ДИАПАЗОН	ІЫ ИЗМЕРЕН	ия						
Диапазон давления, бар		Перегрузка,	Давление	Диапазон дав	зления, бар	Перегрузка,	Давление	
Избыточное	Абсолютное	бар	разрыва, бар	Избыточное	Абсолютное	бар	разрыва, бар	
-10	-	3,0	4,0	06,0	06,0	15	20	
00,04	-	0,3	1,0	010	010	30	40	
00,06	-	0,3	1,0	016	016	60	80	
00,10	00,10	1,0	1,5	025	025	60	80	
00,16	00,16	1,0	1,5	040	040	100	150	
00,25	00,25	1,0	1,5	060	060	100	150	
00,40	00,40	1,0	1,5	0100	0100	150	230	
00,60	00,60	3,0	4,0	0160	0160	300	450	
01,0	01,0	3,0	4,0	0250	0250	530	780	
01,6	01,6	6,0	8,0	0400	0400	1050	1580	
02,5	02,5	6,0	8,0	0600	0600	1050	1580	
04,0	04,0	15	15	-	-	-	-	

P > 0,4 бар	0,4 ≥ P > 0,16 бар	Р ≤ 0,16 бар
≤ ±0,25 (стандарт) / 0,2 (опция) / 0,1 (опция)	≤ ±0,5 (стандарт)	≤ ±1 (стандарт)
≤ ±0,1	≤ ±0,2	≤ ±0,25
-20+80 °C	0+80 °C	0+80 °C
-40+60 °C	-40+60 °C	-40+60 °C
≤±0,05% ДИ / 10 В		
≤ ±0,05% ДИ / кОм (для датчиков с токовым	сигналом)	
≤±0,1% ДИ / год		
≤ 1 мс для аналогового выхода, < 200 мс для	я цифрового выхода	
	$\leq \pm 0,25$ (стандарт) / 0,2 (опция) / 0,1 (опция) $\leq \pm 0,1$ -20+80 °C -40+60 °C $\leq \pm 0,05\%$ ДИ / 10 В $\leq \pm 0,05\%$ ДИ / кОм (для датчиков с токовым $\leq \pm 0,1\%$ ДИ / год	$ \le \pm 0,25 \; (\text{стандарт}) \; / \; 0,2 \; (\text{опция}) \; / \; 0,1 \; (\text{опция}) \\ \le \pm 0,5 \; (\text{стандарт}) \\ \le \pm 0,1 \\ -20+80 \; ^{\circ}\text{C} \\ -40+60 \; ^{\circ}\text{C} \\ \le \pm 0,05\% \; \text{ДИ} \; / \; 10 \; \text{B} \\ \le \pm 0,05\% \; \text{ДИ} \; / \; \text{кОм} \; (\text{для датчиков с токовым сигналом}) $

^{*} Основная погрешность включает нелинейность, гистерезис и воспроизводимость.

> 100 x 10⁶ циклов

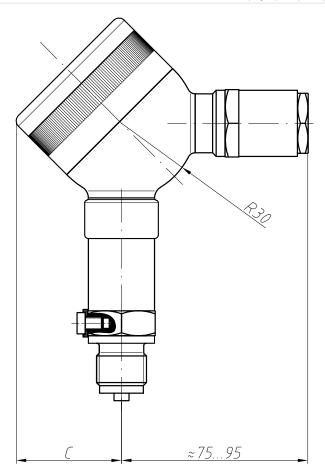
ЭКСПЛУАТАЦИОННЫЕ ХА	РАКТЕРИСТИКИ								
Температура измеряемой среды	-40+125 °C	+125 °C							
Температура окружающей среды	-40+85 °C, в соответствии с тем	+85 °C, в соответствии с температурным классом							
Температура хранения	-50+85 °C	50+85 °C							
Взрывозащита		1Ex d IIC T6T4 Gb X							
Температурный класс	T4	T5	Т6						
Окружающая среда	-40+85 °C	-40+70 °C	-4060 °C						
Вибростойкость	10 g RMS, 20–2000 Гц								
Ударопрочность	100 g / 11 мс								

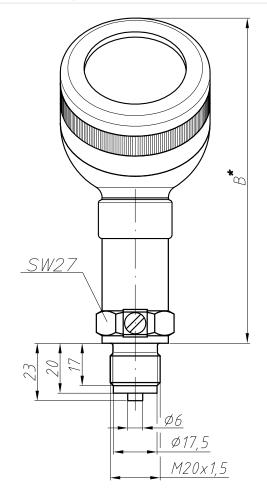
КОНСТРУКЦИЯ									
Материал корпуса и штуцера	нержавеющая сталь 316L (1.440	ержавеющая сталь 316L (1.4404)							
Уплотнение	сварка (-40+125 °C)	варка (-40+125 °C)							
Мембрана	нержавеющая сталь 316L (1.443	нержавеющая сталь 316L (1.4435)							
Контактирующие со средой части	мембрана, механическое присоединение, уплотнение								
Механическое присоединение	M20x1,5 EN 837; G1/2" EN 837;	G1/4" EN 837; 1/4" NPT; 1/2" NPT; <mark>N</mark>	M12x1,5 EN 837; M12x1 EN 837						
Электрическое присоединение	Класс защиты	Сечение провода, макс.	Диаметр кабеля						
Полевой корпус, кабельный ввод M20x1,5	IP67	1,5 mm²	612 мм						

Pecypc

цифровой дисплей	
Вид дисплея	OLED графический 128х64 точек (30х16 мм)
Отображаемые значения	bar, mbar, MPa, KPa, Pa, psi, mmHg, mWc, ftH2O, %, mA, user
Диапазон отображаемых цифровых значений	-19999999
Дополнительная погрешность отображаемой величины	0,1 % ДИ ± единица младшего разряда, выраженная в % от ДИ
Время установления показаний	< 1 с (при отключенном демпфировании)
Демпфирование	0,330 с (программируется)

ЭЛЕКТРИЧЕСКИЕ ХА	РАКТЕРИСТИКИ				
Выходной сигнал	Напряжение питания, Uпит	Сопротивление нагрузки	Потребление тока		
420 мА / 2-пров.	1236 B	$\leq [(U_{\Pi \nu T} - 12 B) / 0.02 A] Om^*$			
420 мА / HART®	1842 В (с дисплеем)	≤ [(U _{пит} – 18 В) / 0,02 А] Ом* (с дисплеем)	<u>M)</u> ≤ 26 mA		
420 мА / 3-пров.		≤ 500 Om			
020 мА / 3-пров.	1236 B	≥ 300 OM			
010 В / 3-пров.	1230 B	≥ 10 кОм	< 7 mA		
05 В / 3-пров.			< / IVIA		
0,54,5 В / 3-пров.	5 B	≥ 5 кОм	≤ 2 mA		
0,54,5 В / 3-пров.	615 B		≤ 7 MA		
RS 485 / Modbus RTU	1236 B	-	≤ 7 mA		


 $^{^{\}star}$ Для выходного сигнала 4... 20 мА / HART $^{\circ}$ минимальное сопротивление нагрузки для цифровой передачи: 250 Ом. HART® является зарегистрированной торговой маркой HART Communication Foundation.


	ПРИСОЕДИНЕНИЯ / ТАБ		
Цепи датчика		Полевой корпус без дисплея	Полевой корпус с дисплеем
	питание +	2	2
2-пров.	питание -	3	3
	экран	1	1
3-пров.	питание +	2	-
	питание -	3	-
	выход +	4	-
	экран	1	-
	питание +	2	-
DC 405	питание -	3	-
RS-485 4-пров.	Α	1	-
	В	4	-
	экран	Корпус	-

ГАБАРИТЫ (мм)

Полевой корпус (на примере M20x1,5 EN 837)

	В	C
с дисплеем	130	42
без дисплея	127	39

^{*} С выходным сигналом RS-485 / Modbus RTU корпус датчика длиннее на 25 мм С выходным сигналом HART® корпус датчика длиннее на 30 мм

МЕХАНИЧЕСКИЕ ПРИСОЕДИНЕНИЯ, РАЗМЕРЫ (ММ) G1/4"; M12x1; M12x1,5; M20x1,5; G1/2" EN 837 1/4" NPT 1/2" NPT M12x1 EN 837 SW27 SW27 SW27 SW27 <u> 1/2" NP T</u> 1/4" NPT Ø9,5 G 1/4", M12x1, Ø6 M12x1,25, M12x1,5 G1/2", M20x1,5

КОД ЗАКАЗА

			APZ	3420 x	-X	-X	-XXXX	-X	-XX	-X	-XXX	-X	-X>
	ІЕПРОНИЦ Г6T4 Gb X	АЕМАЯ ОБО. Х	ЛОЧКА										
	МОЕ ДАВЛ												
NOWEFAE	МОЕ ДАВЛ	ICITYIC	Из	вбыточное	G								
				солютное	A								
		Вакуумметри			V								
ЕДИНИЦА	ИЗМЕРЕН		11001100, 1111	- Ι σαρ	•								
					бар	В							
					KT/CM ²	S							
					м вод. ст.	W							
					кПа	К							
					МПа	М							
			Другое	(указать пр	и заказе)	Χ							
ВЕРХНИЙ	предел и	ЗМЕРЕНИЯ	(впи)										
бар, н	≀Г/СМ²	м во	д. ст.	KÍ	Па	M	Па						
0,04	0040	0,4	0400	4,0	4000								
0,06	0060	0,6	0600	6,0	6000								
0,10	0100	1,0	1000	10	1001								
0,16	0160	1,6	1600	16	1601								
0,25	0250	2,5	2500	25	2501								
0,40	0400	4,0	4000	40	4001								
0,60	0600	6,0	6000	60	6001								
1,0	1000	10	1001	100	1002	0,1	0100						
1,6	1600	16	1601	160	1602	0,16	0160						
2,5	2500	25	2501	250	2502	0,25	0250						
4,0	4000	40	4001	400	4002	0,4	0400						
6,0	6000	60	6001	600	6002	0,6	0600						
10	1001	100	1002	1000	1003	1	1000						
16	1601	160	1602			1,6	1600						
25 40	2501 4001	250 400	2502 4002			2,5	2500 4000						
60	6001	400	4002			4							
100	1002					6 10	6000 1001						
160	1602					16	1601						
250	2502					25	2501						
400	4002					40	4001						
600	6002					60	6001						
Другое	XXXX	Другое	XXXX	Другое	XXXX	Другое	XXXX						
Два диа		1107:00		XXXX-X		H-)							
Три диа				XXXX-XXX									
ОСНОВНА	Я ПОГРЕЦ	ІНОСТЬ											
					0,1%	(Р > 0,4 ба	р) (опция)	Α					
					0,2%	(Р > 0,4 ба	ар) (опция)	В					
					0,25% (P	> 0,4 бар)	(стандарт)	С					
				0,5	% (0,4 ≥ P >	> 0,16 бар)	(стандарт)	D					
						≤ 0,16 бар)		Е					
					Другое	(указать п	ри заказе)	Χ					
		РИСОЕДИНЕ											
		без дисп., Ехо							62				
		. без дисп., Е							63				
		исп., Exia/Exd							68				
Поло	вой корп. с	дисп., Ехіа/Ех	кd каб. ввод	M20x1,5 для	і небр. кабе	ля 6-12 мм	в м-рукаве	15 мм	69				

КОД ЗАКАЗА (продолжение)

	APZ 3420 x	-X	-X	-XXXX	-X	-XX	-X	-XXX	-X	-XX
ВЫХОДНОЙ СИГНАЛ		420 мА / 2-пров. (стандарт) А 420 мА / 3-пров. В 020 мА / 3-пров. С 05 мА / 3-пров. S 010 В / 3-пров. D 05 В / 3-пров. Е 0,54,5 В / 3-пров., питание 5 В, 0Ех іа IIC Т6 Т4 Ga X R 0,54,5 В / 3-пров., питание 615 В К RS-485 / Modbus RTU М 420 мА / НАRТ® Н Другое (указать при заказе)								
	СИГНАЛ 420 мА / 2-пров. (стандарт) A 420 мА / 3-пров. B 020 мА / 3-пров. C 050 мА / 3-пров. S 010 В / 3-пров. D 05 В / 3-пров. E 0,54,5 В / 3-пров., питание 5 В, ОЕх іа IIC Тб Т4 Gа X R 0,54,5 В / 3-пров., питание 615 В K RS-485 / Modbus RTU M 420 мА / НАRT® H Другое (указать при заказе) X НОЕ ПРИСОЕДИНЕНИЕ М20х1,5 EN 837 (стандарт) 721 G1/2" EN 837 (стандарт) 721 G1/2" EN 837 (стандарт) 721 G1/4" EN 837 741 M12x1 EN 837 121 M12x1,5 EN 837 123 M16x1,5 EN 837 123 M16x1,5 EN 837 126 161 1/2" NPT 820 M12x1,25 EN 837 128 Другое (указать при заказе) XXX Сварка (-40+125 °C) W Другое (указать при заказе) X									
					420	мА / 3-пров.	В			
					020	мА / 3-пров.	С			
						•				
						•				
						•				
	0,54,5 E	3 / 3-про								
			0,54							
				RS						
				Другое (у	казать і	при заказе)	Χ			
МЕХАНИЧЕСКОЕ ПРИСОЕ	ДИНЕНИЕ									
							,			
					G1		,			
УПЛОТНЕНИЕ					другое	(указать пр	и заказе)	XXX		
УПЛОТПЕПИЕ						Co	anua (40	.105 %()	14/	
ИСПОЛНЕНИЕ						другое ()	rkasa i b lipi	и заказе)	^	
HOHOMHEHME									Станларт	00
					_	TOMOODSTUD	TOM ROMEO			46
				Лополиито						16
				HOHOMINITE.	прпал за	ащина от кон				XX

Пример: APZ 3420 x-G-B-4001-B-60-A-201-W-00

ПРИНАДЛЕЖНОСТИ

DZ 10 Демпфер гидроударов

PZ 1024 Стабилизированный блок питания 10 Вт/24 В

BZ 05 / BZ 10 Клеммная коробка с грозозащитой