
AMZ (модели 5050, 5450)

Руководство по эксплуатации

Это краткое руководство по эксплуатации. Для подробной информации, пожалуйста, обратитесь к технической документации, размещенной на веб-сайте:

www.piezus.ru

Содержание

1 H	Назначение и	ıзделия	4
2 1	Гехнические	характеристики	4
		кнические данные	
		луатации	
		онные ограничения	
		нивость и помехоэмиссия	
		работа	
		схема	
		конструкции	
		ндикация	
	-	сности	
		монтажу	
		вания	
		взрывозащищенности	
		работе	
		раметры работы	
		ля и шкалы прибора без дисплея	
		стройка прибора с дисплеем	
		для настройки прибора HART-коммуникатора для настройки прибора компьютера с HART-модемом	
	-		
	-	я прибора	
		обслуживание	
		и упаковка	
10	Комплектно	СТЬ	28
11	Транспорти	оование и хранение	29
		готовителя	
		ок службы	
		ў утилизации	
	1ЛОЖЕНИЕ A	Информация для заказа	
	1ЛОЖЕНИЕ Б	Габаритные размеры корпуса	
ПРИ	1ЛОЖЕНИЕ В	Электрические подключения	
	1ЛОЖЕНИЕ Г	Перечень изменяемых параметров	41
		HART-коммуникатор модели 375	
ПРΙ	1ЛОЖЕНИЕ Ж	Параметры взрывозащищенности	46

Настоящее руководство по эксплуатации распространяется на датчики давления емкостные АМZ 5050 и АМZ 5450 (далее по тексту – «прибор» или «изделие») и содержит технические характеристики, описание конструкции и другие сведения, необходимые для правильной эксплуатации.

Приборы выпускаются по ТУ 4212-000-7722857693—2015 в разных исполнениях, отличающихся рабочим диапазоном и конструкцией корпуса. Информация об исполнении указана в коде условного обозначения, приведенного в Приложении А.

В соответствии с ГОСТ Р 52931 приборы:

- по виду используемой энергии относится к электрическим изделиям;
- предназначены для информационной связи с другими изделиями;
- по устойчивости к воздействию атмосферного давления соответствует группе Р1;
- по устойчивости к воздействию вибрации соответствует группе V2.

Датчики взрывозащищенного исполнения имеют виды взрывозащиты:

- искробезопасные электрические цепи уровня «ia» (маркировка 0Ex ia IIC T4 Ga X);
- взрывонепроницаемая оболочка «d» (маркировка 1Ex d IIC T5, T6 Gb X).

Приборы выпускаются в корпусах, размеры которых приведены в Приложении Б.

Используемые сокращения и термины

ДИ – диапазон измерений

ВПИ – верхний предел измерений.

ИВ — измеряемая величина.

НПИ – нижний предел измерений.
 ПО – программное обеспечение.
 ПК – персональный компьютер.
 Руд – установленный диапазон.

Рвпи — верхний предел измерения (ВПИ).

AC – переменный ток. **DC** – постоянный ток.

Знаком отмечена важная информация, требующая повышенного внимания от пользователя.

Примечание — Предприятие-изготовитель оставляет за собой право на внесение в конструкцию и схемотехническое решение прибора изменений, не ухудшающих его характеристик.

1 Назначение изделия

- 1.1 Прибор АМZ 5050 выполнен во фланцевом исполнении и предназначен для преобразования дифференциального, избыточного или абсолютного давления газов и жидкостей в выходной аналоговый (ток 4...20 мА) и цифровой (НАRT) сигналы, а также индикации текущего значения измеряемого параметра на цифровом дисплее.
- 1.2 Прибор AMZ 5450 выполнен в штуцерном исполнении и предназначен для преобразования избыточного или абсолютного давления газов и жидкостей в выходной аналоговый (ток 4...20 мА) и цифровой (HART) сигналы, а также индикации текущего значения измеряемого параметра на цифровом дисплее.
- 1.3 Область применения приборов современные системы автоматического контроля и управления технологическими процессами в различных отраслях промышленности, на установках и объектах теплоэнергетического комплекса, в системах кондиционирования воздуха и в научных экспериментах.

2 Технические характеристики

2.1 Основные технические данные

- 2.1.1 Диапазон измерений (ДИ) и основная погрешность измерения указаны на этикетке прибора и в паспорте.
- 2.1.2 ВПИ и НПИ приборов могут перенастраиваться в широких пределах при помощи НАRT-модема (или НART-коммуникатора), либо локально, при помощи магнитного карандаша. Масштаб перенастройки диапазона, в зависимости от номинального ВПИ, приведен в таблицах 2.1–2.3.

Таблица 2.1 – ВПИ АМZ 5050 дифференциального и избыточного давления

Единицы измерений	кПа					МПа	
ВПИ (Р _{ВПИ})	1,5	7,5	37	187	690	2	7
Масштаб перенастройки диапазона (Руд /Рвпи)*	1:10	1:30			1:100		
Допустимое статическое дав- ление, МПа	1 МПа	4 МПа	13,8 МПа				
Допустимое давление перегрузки, МПа	1 МПа	4 МПа		13	3,8 МПа)	

^{*} По умолчанию нижний предел измерений (НПИ) равен 0. Для датчиков дифференциального давления НПИ может быть установлен равным ВПИ по модулю, но со знаком минус. Для датчиков избыточного давления НПИ может быть установлен равным ВПИ по модулю, но со знаком минус, либо равным -100 кПа, если ВПИ датчика ≥187 кПа.

Таблица 2.2 – ВПИ АМΖ 5050 абсолютного давления

Единицы измерений	кПа			МПа		
ВПИ (Р _{ВПИ})	37	187	690	2	7	
Масштаб перенастройки диапазона $(P_{yd}/P_{B\Pi U})^*$	1:100					
Допустимая перегрузка	13,8 МПа					

Таблица 2.3 – BПИ AMZ 5450

Датчик избыточного да	вления	:							
Единицы измерений			кПа				МПа		
ВПИ (Р _{ВПИ})	1,5	7,5	37	187	690	2	7	20	40
Масштаб перенастройки диапазона (Руд/Рвпи)*	1:10								
Допустимая перегрузка	1 МПа	1 Milai 4 Mila i				60 МПа			
Датчик абсолютного да	вления	:							
Единицы измерений		ŀ	ιПа					МПа	
ВПИ (Р _{ВПИ})	37	18	87	6	90	2	7		20
Масштаб перенастройки диапазона (Руд /Рвпи)*	1:100								
Допустимая перегрузка	13,8 МПа 30 МПа								

^{*} По умолчанию нижний предел измерений (НПИ) равен 0. Для датчиков избыточного давления НПИ может быть установлен равным ВПИ по модулю, но со знаком минус, либо равным -100 кПа, если ВПИ датчика ≥187 кПа.

2.1.3 Основная погрешность измерений указана в таблицах 2.4 и 2.5.

Таблица 2.4 – Основная погрешность измерений АМZ 5050.

Для дифференциального и избыточного давления					
Рвпи	Установленный диапазон	Основная погрешность*, % ДИ			
1 5 25 00	Р _{впи} /2 ≤ Р _{УД}	±0,1			
1,5 кПа	$P_{B\Pi U}/10 \le P_{YZ} < P_{B\Pi U}/2$	±[0,02·(Р _{ВПИ} /Р _{УД})+0,06]			
7 FD-	Р _{ВПИ} /10 ≤ Р _{УД}	±0,075			
от 7,5 кПа	$P_{B\Pi U}/40 \le P_{Y\!A} < P_{B\Pi U}/10$	$\pm [0.00375 \cdot (P_{B\Pi II}/P_{YA}) + 0.0375]$			
до 7 000 кПа	$P_{B\Pi U}/100 \le P_{YZ} < P_{B\Pi U}/40$	$\pm[0,00465\cdot(P_{BПИ}/P_{УД})+0,0015]$			
Для абсолютно	го давления				
27	Рн/10 ≤ Руд	±0,1			
от 37 кПа	$P_{B\Pi U}/40 \le P_{YJ} < P_{B\Pi U}/10$	±[0,005·(Р _{ВПИ} /Р _{УД}) + 0,05]			
до 7000 кПа 	$P_{B\Pi U}/100 \le P_{YJ} < P_{B\Pi U}/40$	$\pm [0.06 \cdot (P_{B\Pi IJ}/P_{YZ}) + 0.01]$			

^{*} С учетом нелинейности, гистерезиса и воспроизводимости.

Таблица 2.5 – Основная погрешность измерений прибора АМZ 5450

Для избыточного давления					
Рвпи	Установленный диапазон	Основная погрешность*, % ДИ			
1 5 400	Р _{ВПИ} /2 ≤ Р _{УД}	±0,1			
1,5 кПа	$P_{B\Pi U}/10 \le P_{YZ} < P_{B\Pi U}/2$	±[0,02·(Р _{ВПИ} /Р _{УД})+0,06]			
7 F :- Co	Р _{ВПИ} /10 ≤ Руд	±0,075			
от 7,5 кПа	$P_{B\Pi U}/40 \le P_{YJ} < P_{B\Pi U}/10$	±[0,00375·(Р _{ВПИ} /Р _{УД}) + 0,0375]			
до 40 МПа	$P_{B\Pi U}/100 \le P_{YZ} < P_{B\Pi U}/40$	$\pm [0,00465 \cdot (P_{B\Pi U}/P_{YA}) + 0,0015]$			

Для абсолютного давления						
Рвпи	Установленный диапазон	Основная погрешность*, % ДИ				
27. 6	Р _Н /10 ≤ Р _{УД}	±0,1				
от 37 кПа до	$P_{B\Pi U}/40 \le P_{YJ} < P_{B\Pi U}/10$	±[0,005·(Р _{ВПИ} /Р _{УД}) + 0,05]				
20 MΠa	Р _{ВПИ} /100 ≤ РуД < Р _{ВПИ} /40	±[0,06·(Р _{ВПИ} /Руд) + 0,01]				

^{*} С учетом нелинейности, гистерезиса и воспроизводимости.

2.1.4 Дополнительные погрешности измерений указаны в таблицах 2.6-2.8.

Таблица 2.6 – Дополнительные погрешности АМZ 5050

Дополнительная погрешность, вызванная изменением температуры среды					
Рвпи	Установленный диапазон	Дополнительная погрешность, % ДИ / 10 °C			
4.5.5	Р _{ВПИ} /2 ≤ Р _{УД}	$\pm[0,075\cdot(P_{B\Pi II}/P_{УД})+0,025]$			
1,5 кПа	$P_{B\Pi U}/10 \le P_{YД} < P_{B\Pi U}/2$	$\pm[0,05\cdot(P_{B\Pi U}/P_{УД})+0,075]$			
75.0-	Р _{ВПИ} /5 ≤ Р _{УД}	$\pm [0.04 \cdot (P_{B\Pi II}/P_{YJ}) + 0.025]$			
7,5 кПа	$P_{B\Pi U}/40 \le P_{YД} < P_{B\Pi U}/5$	$\pm[0.03\cdot(P_{B\Pi II}/P_{YД})+0.075]$			
от 37 кПа	Р _{ВПИ} /5 ≤ Р _{УД}	$\pm[0.01\cdot(P_{B\Pi U}/P_{YZ})+0.03]$			
до 7000 кПа	Р _{ВПИ} /100 ≤ Р _{УД} < Р _{ВПИ} /5	$\pm[0,012\cdot(P_{B\Pi U}/P_{YZ})+0,023]$			
Дополнительная погрешность, вызванная изменением статического давления					
_					

	дополнительная погрешность, вызванная изменением статического давления					
	D	Погрешность при изменении давления				
	Р _{ВПИ}	– на нулевое значение*	– на диапазон			
	1,5 кПа	±0,1% ВПИ / 1 МПа	±0,2% ИВ** / 1 МПа			
	7,5 кПа	±0,03% ВПИ / 1 МПа	±0,06% ИВ / 1 МПа			
	от 37 кПа до 7 000 кПа	±0,005% ВПИ / 1 МПа	±0,03% ИВ / 1 МПа			

^{*} Погрешность устраняется установкой нуля при рабочем статическом давлении.

^{**} ИВ – измеряемой величины (относительная погрешность).

Дополнительная погрешность АМZ 5050 в процессе эксплуатации				
Р _{впи} , кПа	Долговременная стабильность для нормальных			
- BINI ICI	условий эксплуатации			
1; 7,5	±0,2% ВПИ / год			
от 37 до 7000	±0,15% ВПИ / 5 лет			

Таблица 2.7 – Дополнительные погрешности АМZ 5450

Дополнительная погрешность, вызванная изменением температуры среды					
D	Установленный	Дополнительная погрешность,			
Рвпи	диапазон	% ДИ / 10 ℃			
1 F v/Do	Р _{впи} /2 ≤ Р _{уд}	±[0,075·(Р _{ВПИ} /Р _{УД}) + 0,025]			
1,5 кПа	$P_{B\Pi U}/10 \le P_{YД} < P_{B\Pi U}/2$	±[0,05·(Р _{ВПИ} /Р _{УД}) + 0,075]			
7 E 1/Do	Р _{ВПИ} /5 ≤ Р _{УД}	$\pm [0,04 \cdot (P_{B\Pi U}/P_{YJ}) + 0,025]$			
7,5 кПа	$P_{B\Pi U}/40 \le P_{YJ} < P_{B\Pi U}/5$	±[0,03·(Р _{ВПИ} /Руд) + 0,075]			
от 37 кПа до	Р _{ВПИ} /5 ≤ Р _{УД}	$\pm[0,01\cdot(P_{B\Pi U}/P_{YД})+0,03]$			
40 МПа	$P_{B\Pi U}/100 \le P_{YZ} < P_{B\Pi U}/5$	±[0,012·(Р _{ВПИ} /Р _{УД}) + 0,023]			
Дополнительная погрешность в процессе эксплуатации АМZ 5450					

Дополнительная погрешность в процессе эксплуатации АМΖ 5450				
Р _{впи}	Долговременная стабильность для нормальных			
L BIIN	условий эксплуатации			
1,5 кПа и 7,5 кПа	±0,2% ВПИ / год			
от 37 кПа до 40 МПа	±0,15% ВПИ / 5 лет			

Влияние изменения внешних условий на метрологические характеристики указано в таблице 2.8.

Таблица 2.8 – Общие параметры для АМZ 5050 и АМZ 5450

Наименование	Значение
Диапазон термокомпенсации	-20+80 °С; -40+60 °С (опция)
Влияние отклонения напряжения питания (номинальное напряжение питания – 24 В ±10%)	≤ ±0,05% ДИ / 10 В
Влияние отклонения сопротивления нагрузки	≤ ±0,05% ДИ / кОм
Время установления рабочего режима (после подачи питания, при установленном времени демпфирования 0 с)	не более 2 с

2.1.5 Параметры выходного сигнала прибора соответствуют таблице 2.9.

Таблица 2.9 – Параметры выходного сигнала

Наименование	Значение (свойства)
Количество аналоговых измерительных каналов	один
Выходного сигнала	420 мА (2-пров.)/ HART
Аварийный режим выходного сигнала, ток	3,6 мА или 21 мА
Напряжение питания (U _{пит})	от 9 до 44 B (DC)*
Сопротивление нагрузки	не более 1500 Ом**
Электрическая прочность изоляции	500 B
Сопротивление гальванической изоляции	≥ 100 MOM

^{*}Для работы датчика по HART протоколу напряжение питания должно быть не менее 14 В. При включенной подсветке, минимальное напряжение питания датчика должно быть 12 В/17 В (без HART/с HART).

2.1.6 Характеристика изменения выходного сигнала – линейная.

2.1.7 Приборы могут быть оснащены дисплеем, основные параметры которого указаны в таблице 2.10.

Таблица 2.10 – Параметры дисплея

Значение
-1999+9999
7/5 мм
0,1% ДИ ± единица младшего разряда, выраженная в % от ДИ
0,2 c
-30* до +85 °C

^{*} При снижении температуры ниже -30 °С дисплей не отображает значения давления и из строя не выходит.

2.1.8 Особенности конструкции описаны в таблице 2.11.

^{**} Для работы датчика по HART протоколу сопротивление нагрузки должно быть не менее 250 Ом.

Таблица 2.11 – Параметры конструкции

Наименование	Значение (свойства)
Электрическое присоединение	кабельный ввод 1/2" – 14 NPT; кабельный ввод M20x1,5
Механическое присоединение	1/4" – 18 NPT внутренний; 1/2" – 14 NPT внутренний (с адаптером).
Контактирующие со средой части	фланцы, мембрана, уплотнение
Корпус, фланцы	нержавеющая сталь 316L (1,4404)
Мембрана	нержавеющая сталь 316L (1,4435)
Уплотнение	EPDM (этилен-пропиленовый каучук); FKM (фторкаучук); NBR (нитрилбутадиеновый каучук); PTFE (политетрафторэтилен)
Крепеж, монтажный кронштейн	углеродистая сталь, нержавеющая сталь
Степень защиты корпуса прибора по ГОСТ 14254	IP67
Габаритные размеры, мм, не более	177×116×110
Масса прибора, кг, не более	3,5

2.1.9 Эксплуатационные характеристики прибора приведены в таблице 2.12.

Таблица 2.12 – Эксплуатационные характеристики

Наименование	Значение (свойства)
Вибростойкость по ГОСТ Р 52931	группа исполнения V2
Стойкость к ударным нагрузкам	ускорение случайных ударов до 100 g, продолжительность 11 мс
Ресурс эксплуатации сенсора	> 100×10 ⁶ циклов нагружения
Время отклика	≤ 200 MC

2.1.10 Параметры взрывозащиты прибора приведены в Приложении Ж.

2.2 Условия эксплуатации

Изделие предназначено для эксплуатации в условиях:

- закрытые взрывобезопасные или взрывоопасные (согласно маркировки взрывозащиты) помещения без агрессивных паров и газов;
- атмосферное давление от 84 до 106,7 кПа;
- температура окружающей среды от -50 до +85 °C;

- температура измеряемой среды от -40 до +105 °C (в зависимости от применяемого уплотнения). Измеряемая среда: газ, пар и жидкости (в том числе нефтепродукты), неагрессивные к конструкционным материалам изделия.

2.3 Эксплуатационные ограничения

Среда измерений для прибора не должна содержать кристаллизующихся примесей, загрязнений и пыли.

Прибор следует размещать в местах, где скорость движения измеряемой среды минимальна (без завихрений).

При установке прибора необходимо исключить попадания загрязнений на измерительную мембрану.

2.4 Помехоустойчивость и помехоэмиссия

По уровню излучения радиопомех (помехоэмиссии) изделие соответствует нормам, установленным для оборудования класса A по ГОСТ Р 51318.22 (СИСПР 22:2006).

По устойчивости к радиочастотным электромагнитным полям изделие соответствует степени жесткости класса 3 по ГОСТ Р 51317.4.3 (МЭК 61000-4-3).

3 Устройство и работа

3.1 Структурная схема

Принцип действия прибора поясняет схема, приведенная на рисунке 3.1. Сигнал от сенсора поступает на аналого-цифровой преобразователь (АЦП) и далее, на микропроцессор, где осуществляется его цифровая фильтрация, коррекция, масштабирование, а также передачу числового значения на дисплей и цифроаналоговый преобразователь (ЦАП), на выходе которого формируется унифицированный сигнал тока 4...20 мА с наложенным на него цифровым сигналом в стандарте НАRT. Цифровые и аналоговые сигналы передаются во внешние устройства одновременно по одной паре проводов.

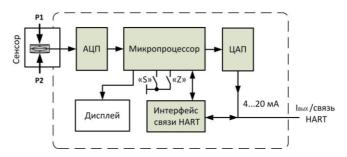


Рисунок 3.1 – Структурная схема прибора с выходом 4...20 мА и цифровым сигналом стандарта HART (Р1, Р2 – давление измеряемой среды)

Используемый HART-протокол позволяет выполнять конфигурирование, настройку, калибровку, тестирование и считывание информации о переменных процесса в текущих единицах измерения.

3.2 Особенности конструкции

Конструкция прибора выполнена в литом корпусе и состоит из элементов, показанных на рисунке 3.2. В состав корпуса входят:

- 1 защитная крышка дисплея;
- 2 дисплей (изменяется ориентация с шагом 90°);
- 3 стопорный винт (откручивается для изменения ориентации корпуса);
- 4 основной корпус;
- 5 крышка отверстий локальной настройки;
- 6 винт для фиксации крышки;
- 7 крышка клеммной колодки:
- 8 заглушки с дренажным клапаном (для дифференциального давления заглушки две; для избыточного и абсолютного давления заглушки три);
- 9 фланцы с внутренней резьбой для подключения к измеряемой среде;
- 10 фланцевые болты;
- 11, 12 уплотнительные кольца;
- 13 сенсор (преобразователь чувствительный к давлению элемент);
- 14 резьбовое отверстие для винта заземления корпуса;
- 15 гайки для фиксации фланцев;
- 16 штуцер;
- 17 адаптер**.**

Сигнальный кабель заводится в корпус через кабельный ввод с внутренней резьбой $\frac{1}{2}$ NPT. Для удобства монтажа, кабельный ввод может устанавливаться как с левой, так и с правой стороны корпуса. С противоположной стороны вкручивается металлическая заглушка.

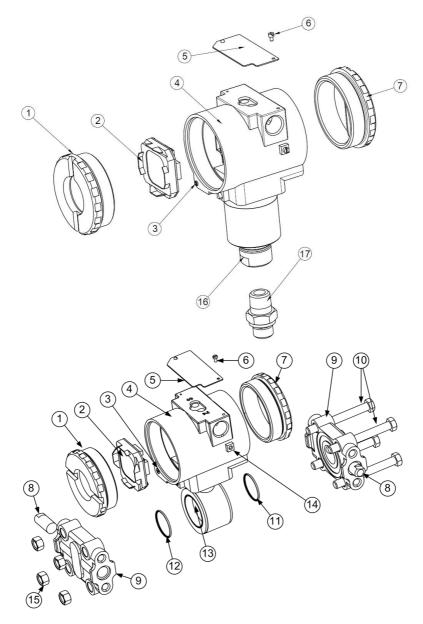


Рисунок 3.2 – Основные составные части датчиков AMZ 5450 и AMZ 5050

В качестве чувствительного к давлению элемента применяется емкостной сенсор, который в упрощенном виде показан на рисунке 3.3. Он состоит из центральной мембраны, находящейся в профилированной полости, заполненной разделительной жидкостью (силиконовое масло). Данная мембрана в совокупности с металлизированными поверхностями профилированной полости образует два конденсатора, имеющих одну общую подвижную центральную обкладку. Давление контролируемой среды через разделительные стальные мембраны и заполняющую жидкость, передается на центральную мембрану, что, в свою очередь, приводит к разнонаправленному изменению электрической емкости конденсаторов, пропорционально измеряемому давлению. Изменение емкости преобразуется в нормированный электрический сигнал.

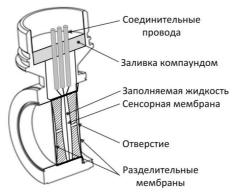
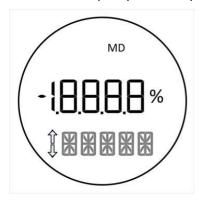



Рисунок 3.3 - Конструкция емкостного сенсора

3.3 Встроенная индикация

На лицевой стороне прибора расположен жидкокристаллический дисплей, назначение элементов которого указано на рисунке 3.4.

Режим работы контроллера прибора: < MD – активен адресный режим (адрес не равен 0).

- < Значение измеряемой величины давления (в выбранных единицах измерения или % от ДИ).
- < Единицы измерений (в режиме настройки пункты меню).

Рисунок 3.4 – Назначение элементов дисплея

Дисплей позволяет отображать одну или две величины (например, измеряемое давление и выходной ток, с указанием единиц измерения). Каждая из величин показывается с интервалом в 3 секунды. Дисплей также выводит кодовую информацию (таблица 3.1).

Таблица 3.1 – Системная информация

Код ошибки	Описание
0864	Чувствительный элемент (ЧЭ) сенсора не присоединен (следует прове-
0004	рить соединение разъема шлейфа сенсора и электронного блока)
0080	Чувствительный элемент неисправен
	Неисправен встроенный датчик температуры. В этом случае измерения
0040	давления продолжаются, но может возрасти погрешность полученных
	значений
****	Значения других кодов предназначены для сервисных служб и уточня-
	ются у изготовителя

Код ошибки показывается в момент начальной загрузки при подаче питания на прибор.

Примечание — Предприятие-изготовитель оставляет за собой право на внесение в конструкцию и схемотехническое решение прибора изменений, не ухудшающих его характеристик.

4 Меры безопасности

- 4.1 Источником опасности при монтаже или эксплуатации приборов является измеряемая среда, находящаяся под давлением. Присоединение и отсоединение прибора от магистралей, подводящих измеряемую среду, должно осуществляться после закрытия вентиля на линии перед изделием. Отсоединение прибора должно производиться после сброса подводимого давления до атмосферного.
- 4.2 При эксплуатации, техническом обслуживании и поверке необходимо соблюдать требования ГОСТ 12.3.019, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 4.3 По способу защиты человека от поражения электрическим током прибор соответствует классу III по ГОСТ 12.2.007.0 (опасное напряжение отсутствует).
- 4.4 Подключение, регулировка и техобслуживание изделия должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

ЗАПРЕЩАЕТСЯ использование изделия в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4.5 Монтаж и эксплуатация взрывозащищенных приборов должны производиться в соответствии с требованиями ГОСТ Р МЭК 60079-0, ГОСТ Р МЭК 60079-14 и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.

ВНИМАНИЕ! Корректировку значения выходного сигнала прибора с видом взрывозащиты «взрывонепроницаемая оболочка» необходимо производить с соблюдением «Правил ведения огневых работ во взрывоопасных зонах или за пределами взрывоопасной зоны».

5 Указания по монтажу

5.1 Общие требования

- 5.1.1 К монтажу и эксплуатации прибора должны допускаться лица, изучившие настоящее руководство по эксплуатации и прошедшие соответствующий инструктаж.
- 5.1.2 Приборы взрывозащищенного исполнения могут устанавливаться во взрывоопасных зонах категории IIA, IIB, IIC согласно общим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.
- 5.1.3 Перед монтажом проводится внешний осмотр изделия. При внешнем осмотре необходимо проконтролировать отсутствие видимых механических повреждений, проверить маркировку взрывозащиты. Поверхность датчика должна быть сухой и чистой.
- 5.1.4 Присоединение и отсоединение прибора от магистралей, подводящих измеряемую среду, должно производиться после сброса давления на входе до атмосферного (или закрытия вентиля на линии перед датчиком). Использование вентилей упростит периодический контроль и техобслуживание изделия в процессе эксплуатации.
- 5.1.5 Рабочее положение прибора произвольное, удобное для монтажа, демонтажа и обслуживания. Возможен монтаж прибора непосредственно на технологическом трубопроводе при помощи дополнительного крепежного приспособления: прямого или углового кронштейна, рисунок Б.2 и Б.3 (Приложение Б).

Примечание – Рекомендуется монтировать прибор вертикально или горизонтально.

5.1.6 Ориентацию дисплея можно изменить как вокруг оси перпендикулярной его плоскости с дискретностью 90° (для этого потребуется открутить крышку, и установить дисплей в желаемое положение), так и вокруг вертикальной оси датчика (для этого потребуется ослабить фиксирующий винт находящийся в основании полевого корпуса), что позволяет подобрать удобное положение для комфортного считывания показаний.

- 5.1.7 Присоединение и отсоединение прибора от магистралей, подводящих измеряемую среду, должно производиться после сброса давления на входе до атмосферного (или закрытия вентилей на линиях перед прибором). Использование двух вентилей перед прибором упростит периодический контроль и техобслуживание изделия в процессе эксплуатации.
- 5.1.8 Надежная работа прибора требует правильного выбора места отбора давления (подключения соединительных трубок). При этом соединительные трубки должны быть проложены по кратчайшему расстоянию. Отбор давления рекомендуется производить в местах, где скорость движения среды наименьшая и поток без завихрений, т. е. на прямолинейных участках трубопровода при максимальном возможном расстоянии от запорных устройств и других гидравлических узлов.
- 5.1.9 Соединительные линии от места отбора давления должны иметь односторонний уклон (не менее 1:10) вверх к датчику, если измеряемая среда газ, и вниз к датчику, если измеряемая среда жидкость. Если это невозможно, при измерении давления газа в нижних точках соединительных линий следует устанавливать отстойные сосуды, а при измерении давления жидкости в наивысших точках газосборники.
- 5.1.10 Наиболее часто подключают прибор к измеряемой среде через 3-вентильный блок, позволяющий отсекать датчик от измеряемой среды и выравнивать давление на входах при калибровке (рисунок 5.1).

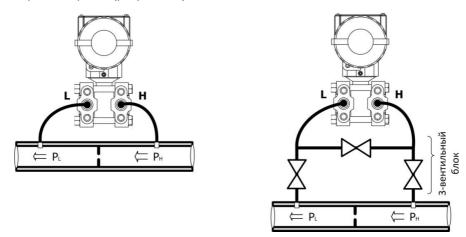


Рисунок 5.1 – Примеры монтажа для измерений давления жидких сред

Дополнительные варианты применения прибора показаны на рисунках 5.2 и 5.3. Для измерения давления (расхода) жидкости или газа отвод обычно делается сверху или сбоку трубопровода.

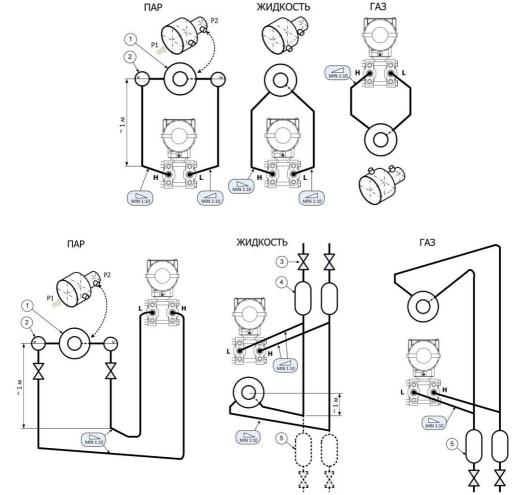


Рисунок 5.2 – Примеры монтажа для измерений давления пара, газа или жидкости, где указаны элементы: 1 – место измерения давления; 2 – конденсационный сосуд; 3 – вентиль; 4 – газосборник; 5 – отстойный сосуд для конденсата

ВНИМАНИЕ! Не допускайте засорения входного отверстия штуцера со стороны низкого давления (атмосферного эталонного давления) при использовании AMZ 5050 в качестве датчика избыточного давления. Прибор должен быть установлен таким образом, чтобы обеспечить свободный дренаж загрязнений.

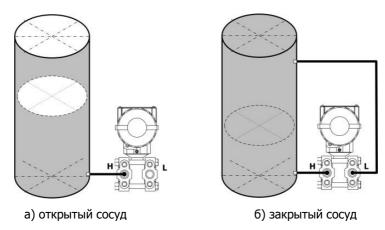


Рисунок 5.3 – Примеры монтажа прибора для измерений уровня в технологическом резервуаре

- 5.1.11 Питание электрической части необходимо осуществлять от источника постоянного напряжения, при этом амплитуда пульсаций напряжения не должна превышать 0,5%.
- 5.1.12 Подключение электрических цепей прибора должно производиться только при отключенном питании.
- 5.1.13 Цепи прибора подключаются через кабельный ввод при снятой крышке в соответствии с электрическими схемами, приведенными в Приложении В (при подключении необходимо соблюдать полярность).

Примечание – Приборы имеют защиту от обратной полярности напряжения питания.

- 5.1.14 Для монтажа применяется медный экранированный кабель с изолирующей оболочкой.
- 5.1.15 Для монтажа применяется медный экранированный кабель с изолирующей оболочкой. Для обеспечения устойчивой связи по протоколу HART рекомендуется применять экранированную витую пару проводов либо специальный кабель, с сечением проводников не менее 0.2 мм^2 (длина не более 1500 м).
- 5.1.16 Экран кабеля заземляется только на приемной стороне (у сопротивления нагрузки линии).
- 5.1.17 Корпус прибора должен быть обязательно заземлен.
- 5.1.18 Для обеспечения эффективного уплотнения кабеля кабельным вводом следует использовать кабель круглого сечения соответствующего для данного кабельного ввода диаметра. По умолчанию, с датчиком поставляется кабельный ввод предназначенный для кабелей диаметром от 6 до $11\,\mathrm{Mm}$.

Примечание — Если для подключения прибора используется только один кабельный ввод, неиспользуемый ввод должен быть закрыт заглушкой, которая имеется в составе изделия.

- 5.1.19 Не допускается попадание влаги внутрь корпуса. После завершения монтажа крышки датчика необходимо закрутить до упора для обеспечения надежного уплотнения.
- 5.1.20 Рекомендуется располагать вводной кабель как это показано на рисунке 5.4.

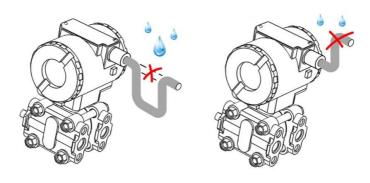


Рисунок 5.4 - Ввод кабеля

5.1.21 Не прокладывайте сигнальные провода через трубопровод или открытый кабельный желоб вместе с силовым кабелем, или рядом с мощным электрооборудованием.

5.2 Обеспечение взрывозащищенности

- 5.2.1 Приборы взрывозащищенного исполнения могут устанавливаться во взрывоопасных зонах помещений и наружных установок В-I и В-II температурных классов Т1...Т4,Т6 согласно общим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.
- 5.2.2 При монтаже прибора следует руководствоваться следующими документами:
- Правила устройства электроустановок (ПУЭ), глава 7.3 «Электроустановки во взрывоопасных зонах»;
- Правила технической эксплуатации электроустановок потребителей (ПЭЭП),
 глава 3.4 «Электроустановки во взрывоопасных зонах»;
- ГОСТ Р МЭК 60079-0;
- − ΓΟCT P MЭK 60079-11:
- ВСН332-74 Инструкция по монтажу электрооборудования, силовых и осветительных сетей взрывоопасных зон.

6 Подготовка к работе

6.1 Заводские параметры работы

Заводские настройки прибора соответствуют заказу и основные из них указаны в паспорте. Дополнительные заводские установки следующие:

- изменение выходного сигнала: линейно возрастает пропорционально входному давлению;
- значение времени демпфирования 0 с;
- отображение на экранах: экран 1 давление в единицах измерения; экран 2 дублирует первый экран;
- адрес прибора по протоколу HART 0 (для активизации многоканального режима связи для адреса может быть установлено одно из чисел от 1 до 15);
- версия HART-протокола 7.

Примечание — Версию программного обеспечения HART и все остальные конфигурационные параметры можно узнать при помощи коммуникатора, работающего по протоколу HART.

При эксплуатации могут быть изменены параметры работы прибора с учетом конкретных требований. Все настройки производятся при подключении прибора по одной из схем, приведенных в Приложении В. При этом устанавливается технологический переключатель режима настройки в виде перемычек в положение согласно таблице 6.1 (рисунок В.1, Приложение В).

Таблица 6.1 – Положение перемычек для режимов работы

Состояние контактов	Режим настройки
MODE LV2 LV1	НАRТ только чтение. Запрет конфигурирования по HART. Запрет ручного конфигурирования
MODE LV2 LV1	НАRТ чтение и возможность настройки по НАRТ всех параметров. Ручная настройка НПИ и ВПИ с подачей опорного давления
MODE LV2 LV1	Конфигурирование по HART разрешено. Ручная настройка всех параметров через меню прибора

Перемычки настройки режимов работы датчика находятся под крышкой справа от дисплея, а включение/отключение подсветки – слева от дисплея, таблица 6.2.

Таблица 6.2 – Положение перемычек для управления подсветкой дисплея

Состояние контактов	Режим настройки
ON	
OFF	Подсветка дисплея отключена (минимальное напряжение питания прибора 9 В)
ON ON IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Подсветка дисплея включена (минимальное напряжение питания прибора 13,5 B)

6.2 Настройка нуля и шкалы прибора без дисплея

При настройке (калибровке) устанавливает соответствие между показаниями прибора и точным давлением на входе. Для этого следует на сенсор прибора подать опорное давление, соответствующее НПИ/ВПИ, и дождаться его стабилизации.

Примечание – На время проведения работы следует установить перемычку режима настройки между контактами LV1 (таблица 6.1).

Далее:

- снять верхнюю крышку и вставить магнитный «карандаш» в отверстие Z/S (рисунок 6.1);

Рисунок 6.1 – Расположение местных регуляторов настройки, отверстие установки нуля обозначено Z (Zero), диапазона – S (Span)

- через 2 с выходной сигнал установится равным 4 мА/20 мА;
- удалить магнитный «карандаш» и закрыть настроечные отверстия крышкой.

6.3 Локальная настройка прибора с дисплеем

Примечание – На время проведения работы следует установить перемычку режима настройки между контактами LV2 (таблица 6.1).

Для настройки:

– снять верхнюю крышку и вставить магнитный «карандаш» в отверстие S (рисунок 6.2), при этом произойдет переход прибора в режим настройки параметров работы (на дисплее отображается один из пунктов меню);

Рисунок 6.2 – Элементы локальной настройки

- вставляя магнитный карандаш в отверстие Z, переключать пункты меню до выбора нужного (перечень доступных для изменения параметров приведен в Приложении Г);
- для активации выбранного пункта меню вставить магнитный карандаш в отверстие S;
- для возврата прибора в рабочий режим следует извлечь магнитный карандаш и закрыть настроечные отверстия крышкой.

Порядок действий при изменении конфигурирования и подстройки параметров следующий.

Установка значений пределов НПИ/ВПИ:

- на вход прибора давление не подается;
- в меню **tOP RANGE** прибора выбрать пункт **LRV/URV** (со стрелкой вверх или вниз) и установить желаемое значение НПИ/ВПИ в единицах, выбранных в пункте меню **rAnG**

UNIT. Стрелка указывает направление изменения значения, при помещении магнитной отвертки в отверстие S. Стрелка вверх – значения будут расти, стрелка вниз – уменьшаться.

Конфигурация. Установка НПИ/ВПИ с опорным давлением:

- на вход прибора подать давление, соответствующее НПИ/ВПИ, и дождаться его стабилизации;
- в меню **tOP RANGE** прибора выбрать пункт **LRVP/URVP** после его активации выходной сигнал установится, соответственно, равным 4 мА/20 мА.

При настройке выходной сигнал отображается в процентах от ДИ: 0% соответствует 4 мА, 100% - 20 мА.

Конфигурация. Время демпфирования:

- в меню **tOP RANGE** прибора выбрать пункт **DAMP** (со стрелкой вверх или вниз);
- установить значение параметра в диапазоне от 0 до 128 с.

Эта функция позволяет сгладить изменения (уменьшить колебания) выходного сигнала при значительных колебаниях или скачках измеряемого давления.

Конфигурация. Единицы измерений:

- в меню top range выбрать пункт rang unit и его активировать;
- в доступном перечне выбрать нужную единицу (таблица Г.1, Приложение Г).

Подстройка параметров

Для корректировки характеристики прибора в меню **tOP TRIM** следует выбрать нужный пункт (**ZTRIM/LTRIM/UTRIM**) и его активировать при соответствующем значении поданного на вход давления.

6.4 Применение для настройки прибора HART-коммуникатора

Для изменения параметров работы прибора можно использовать автономный ручной HART-коммуникатор, подключенный по схемам, приведенным на рисунках B.5–B.8 (Приложение B).

Примечание – HART-коммуникатор может быть подключен к прибору в любой точке токовой петли, при этом во всех случаях сопротивление цепи между точками подключения коммуникатора должно быть не менее 250 Ом.

Рекомендуется использовать модели универсальных HART-коммуникаторов, например, Hart 375 Communicator BR.

Основные возможности и особенности работы полевого HART-коммуникатора модели 375 указаны в Приложении Д.

6.5 Применение для настройки прибора компьютера с HART-модемом

Изменение параметров работы прибора можно выполнять удаленно при помощи ПК, подключенного через HART-модем по схеме, рисунок В.З (Приложение В).

Рекомендуется использовать модели HART-модемов: MH-02, ESH232U и другие.

7 Эксплуатация прибора

- 7.1 В паспорте следует указать дату ввода изделия в эксплуатацию.
- 7.2 При эксплуатации прибор подвергается периодической поверке в соответствии с паспортными данными. Межповерочный интервал указан в паспорте на изделие.
- 7.3 В паспорте рекомендуется делать отметки, касающиеся эксплуатации: данные периодического контроля и о имевших место неисправностях.

ЗАПРЕЩАЕТСЯ:

- Подавать напряжение питания, превышающее максимально допустимое значение.
- Оказывать механическое воздействие какими-либо предметами на измерительную мембрану.
- 3 Эксплуатация изделия с видимыми механическими повреждениями. Эксплуатация изделия в несоответствующих климатических усло-
- 4 виях.
 - Эксплуатация изделия с температурой измеряемой среды ниже или
- 5 выше допустимых пределов.
- 7.4 Ремонт прибора может производить только завод-изготовитель.
- 7.5 Рекламации на изделие с поврежденными пломбами предприятия-изготовителя и с дефектами, вызванными нарушением правил эксплуатации, транспортирования и хранения, не принимаются.

8 Техническое обслуживание

- 8.1 При выполнении работ по техническому обслуживанию изделия следует соблюдать меры безопасности, изложенные в разделе 4.
- 8.2 Техническое обслуживание проводится не реже одного раза в шесть месяцев и состоит в удалении пыли и грязи, а также профилактических осмотров. При осмотре проверить:
- целостность корпуса, отсутствие на нем коррозии, вмятин и видимых механических повреждений;
- надежность крепления винтовых соединений и самого изделия в рабочем положении;
- отсутствие признаков потери герметичности в линиях подвода давления;
- отсутствие повреждения изоляции в соединительных электрических кабелях;
- состояние заземления (заземляющие болты должны быть без ржавчины и затянуты при необходимости очистить и подтянуть);
- убедиться в исправности электрических контактов клеммника (при необходимости подтянуть винтовые соединения клеммной колодки);
- убедиться в надежности уплотнения подводимого кабеля.
- 8.3 В процессе эксплуатации следует регулярно проверять чистоту измерительной мембраны. Для очистки датчика нельзя применять высокое давление.
- 8.4 Для продувки камер датчика и слива конденсата во фланцах сенсора имеются дренажные клапаны, ввернутые в пробки.

ВНИМАНИЕ! Продувку соединительных линий производить через датчик не допускается.

- 8.5 При включении прибора он выполняет самодиагностику своего состояния. При исправном состоянии на выходе устанавливается ток, соответствующий измеренному давлению. При возникновении неисправности встроенный контроллер обнаруживает информационные и аварийные ошибки. В случае обнаружения аварийной ошибки (при запуске или в процессе работы) на выходе датчика устанавливается постоянное значение тока в соответствии с таблицей 8.1, а также формируется дополнительная информация в виде системных сообщений, см. таблицу 3.1.
- 8.6 В процессе эксплуатации прибора могут возникнуть сбои в работе, требующие реакции обслуживающего персонала. В таблице 8.1 приведена информация о возможных проблемах и способах их устранения.

Таблица 8.1 – Список возможных неисправностей и способы их устранения

Состояние	Способ устранения
1. Выходной сигнал отсутствует	Проверить соответствие полярности подключения источника питания и, при необходимости, изменить полярность
	Проверить наличие напряжения на клеммах питания и, при его отсутствии, обеспечить подачу питания
2. Не удается устано- вить связь с прибором	Проверить и, при необходимости, обеспечить стабильность напряжения питания на клеммах прибора
по HART-протоколу	Проверить и, при необходимости, скорректировать величину нагрузочного сопротивления в цепи питания (оно должно быть не менее 250 Ом)
	Проверить правильность адреса прибора по HART-протоколу
	Проверить исправность HART-модема
3. Выходной ток больше 20 мА или меньше 3,8 мА	Прибор находится в режиме АВАРИЯ – для возврата в рабочий режим следует отключить его питание и повторно включить через 510 с
	Проверить величину подаваемого на прибор давления
4. Прибор не реаги- рует на изменение по- данного на вход дав-	Проверить наличие засоров в трубках подачи давления на сенсор и, при необходимости, привести их в соответствие со схемой работы.
ления	Проверить, что величина входного давления соответствует измеряемому диапазону (в случае необходимости, перенастроить прибор на требуемый диапазон или заменить его на модель с требуемыми пределами измерений)
5. Выходной сигнал нестабилен, погрешность измерения пре-	Проверить герметичность линии подачи давления и измерительного сенсора, — обеспечить герметичность: подтянуть пробки, заменить уплотнительное кольцо.
вышает допустимую	При наличии колебаний давления измеряемой среды — включить электронный демпфер (в настройках прибора). При отсутствии колебаний давления измеряемой среды прибор следует заменить исправным

8.7 В случаях неисправностей, не предусмотренных в таблице 8.1, необходимо обратиться на предприятие-изготовитель для получения дополнительной информации.

9 Маркировка и упаковка

- 9.1 Изделие может быть идентифицировано по его производственной маркировке. Маркировка выполнена в виде наклейки и содержит (рисунок 9.1):
- наименование предприятия-изготовителя;
- условное обозначение изделия;
- диапазон измеряемых давлений;
- диапазон выходного сигнала;
- номинальное питающее напряжение и его тип;
- номинальная потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- степень защиты от воздействия воды и пыли по ГОСТ 14254;
- заводской серийный номер и дата выпуска;
- номера контактов электрических цепей (для разъема);
- бар-код (QR-код).

Дополнительно для взрывозащищенного исполнения указывается:

- номер сертификата соответствия;
- вид взрывозащиты: 0Ex iaIIC T4 Ga X, 1Ex d IIC T5, T6 Gb X;
- параметры взрывозащиты электрических цепей.



Рисунок 9.1 – Маркировка основных технических параметров

- 9.2 На корпусе прибора рядом с отверстиями для крепления заземляющего провода имеется знак заземления.
- 9.3 Прибор упакован в потребительскую тару, выполненную из гофрированного картона. Упаковка при пересылке почтой по ГОСТ 9181.

10 Комплектность

Изделие поставляется в комплекте, указанном в таблице 10.1.

Таблица 10.1 – Комплект поставки

Наименование	Количество
Датчик давления емкостной AMZ 5050 или AMZ 5450	1 шт.
Паспорт	1 экз.
Руководство по эксплуатации (краткое)	1 экз.*
Инструмент локальной настройки (магнитный карандаш)	1 шт.**
Монтажный кронштейн (в коде заказа: 1 — прямой, 2 — угловой)	1 шт.**
Элементы крепежа	1 компл.**
Для взрывозащищенных датчиков: Стандарт — кабельный ввод КНВ1NНК/FEC1NВ взрывозащищенный под небронированный кабель (кабель Ø6–12 мм, 1/2 NPT). По запросу — кабельный ввод КОВ1NНК/FECA1NВ взрывозащищенный под бронированный кабель (кабель Ø6–12 мм, диаметр брони 9–17 мм, 1/2 NPT). Для не взрывозащищенных датчиков: Пластиковый кабельный ввод NPA21-10G (кабель Ø6–11 мм, 1/2 NPT)	1 компл.
Методика поверки МП 62291-15	1 экз.**

^{*} Допускается комплектовать одним экземпляром каждые десять приборов, поставляемых в один адрес. Полное руководство по эксплуатации можно бесплатно заказать в печатном виде при поставе партии приборов или скачать в электронном виде на сайте изготовителя www.piezus.ru.

^{**} Поставляется по отдельному заказу.

11 Транспортирование и хранение

- 11.1 Прибор может перевозиться в закрытом транспорте любого типа и на любое расстояние, при этом индивидуальная потребительская тара может дополнительно помещаться в транспортную тару.
- 11.2 Перевозка прибора может осуществляться в транспортной таре при температуре окружающего воздуха от -40 до +85 °C, с соблюдением мер защиты от ударов и вибраций.
- 11.3 Приборы в транспортной таре должны храниться в отапливаемых и вентилируемых помещениях при температуре от +5 до +40 °C. Воздух помещения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию (группа 1 по ГОСТ 15150).

12 Гарантии изготовителя

- 12.1 Гарантийные обязательства изготовителя 24 месяца со дня продажи.
- 12.2 В случае выхода изделия из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортировки, хранения, монтажа и эксплуатации, предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.
- 12.3 Для ремонта обращаться по адресу ООО «Пьезус», указанному на сайте: www.piezus.ru.

13 Ресурс и срок службы

- 13.1 Режим работы непрерывный.
- 13.2 Средняя наработка на отказ 120000 ч.
- 13.3 Срок службы 12 лет (данный показатель надежности установлен для нормальных условий работы: неагрессивная среда, температура $+23 \pm 3$ °C, вибрация и тряска отсутствуют).

14 Сведения об утилизации

- 14.1 Изделие не содержит драгметаллов.
- 14.2 Порядок утилизации определяет организация, эксплуатирующая изделие.

ПРИЛОЖЕНИЕ А Информация для заказа

Код заказа прибора АМZ 5050

AMZ 5050	-X	-XXXX	-XX	-XX	-X	-X	-X	-X	-X	-X	-X	-X	-X	-X	-XX
ВИД ДАВЛЕНИЯ															
дифференциальное	D														
абсолютное															
избыточное															
ВЕРХНИЙ ПРЕДЕЛ ИЗМЕР		1													
	кПа														
	кПа	7500													
	кПа	3701													
	кПа	1872													
	кПа	6902													
2000	кПа	2003													
7000	кПа	7003													
СТАТИЧЕСКОЕ ДАВЛЕНИЕ															
		И 1,5 кПа)	01												
		И 7,5 кПа)	04												
13,8 МПа (для			13												
МАТЕРИАЛ МЕМБРАНЫ /з				,											
	16L/	силиконово	е масло	11											
МАТЕРИАЛ ФЛАНЦЕВ															
		нержавек	ощая ста	<u>ль 316L</u>	S										
УПЛОТНЕНИЕ															
				(фторка		F									
		R (бутадиен													
EPDM (этилен-пропиленовый каучук) E PTFE (политетрафторэтилен) P															
COLLODINA FORDELLING		PIFE (III	олитетра	фторэті	илен)	Р									
ОСНОВНАЯ ПОГРЕШНОСТ			- DEI/	75	7000	п-\	-								
0,075%	(для	датчиков	с ві ій от	г /,5 до	/000	кі іа)	Z								
(для датчиков с ВПИ 1,	c		6),1%	A								
,	5 KI I	а и датчико	в аосолі	ЮТНОГО Д	цавле	ния)									
ДИСПЛЕЙ															
							нет								
DODONELINE BDELLANGUE	V 165	ADALIOR					есть	1							
ПОЛОЖЕНИЕ ДРЕНАЖНЫ	х кл	ALIAHOR		6											
					ренах				٧						
SUENTRIVIECNOE BRIACOE	ПИН		напротив	з присоє	дине	ния К	проц	recci	Α						
ЭЛЕКТРИЧЕСКОЕ ПРИСОЕ	дин	СПИЕ		кабел		DDC:	1/2	' 14	NDT	N					
					кабел										
ВЫХОДНОЙ СИГНАЛ					Kauei	IDHDI	4 BBO	<u>д 1412(</u>	JX1,3	141					
DUNOQUON CHI HAJI						-	TOK 4	20	иΔ / Ι	HΔRT	Н				
				420	мΔ / І						ï				
			4	20 мА											
МЕХАНИЧЕСКОЕ ПРИСОЕД	ТИНЕ	НИЕ		20 1-17	, 11/41	. , 1	u	110 1	<i>J</i> , 10	JD A	•				
1/2" — 14 NPT (с адаптерами) 2															
								- 18				4			
							±/ !	10	(-14114	14h1)				·

Продолжение приложения А

КЛАПАННЫЙ БЛОК*				
Нет	0			
В комплекте с клапанным блоком	1			
С установленным клапанным блоком**	2			
КРЕПЕЖНЫЕ ПРИСПОСОБЛЕНИЯ				
без крепежа в комплекте 0				
прямой кронштейн на трубу				
угловой кронштейн на трубу				
ИСПОЛНЕНИЕ				
	стан	ідартное	00	
	спец	иальное	99	

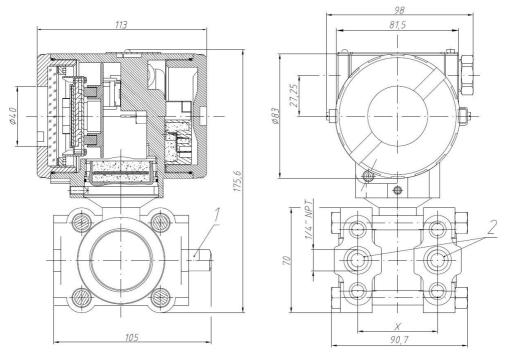
Пример записи при заказе: AMZ 5050-D-7003-13-11-S-F-A-1-V-N-H-2-1-1-00.

Код заказа прибора АМZ 5450

	AMZ 5450			-XX	-X	-X	-X	-X	-X	-X	-X	-X	-X	-XX
ВИД ДАВЛЕНИЯ														
	абсолютное	Α												
	избыточное	G												
ВЕРХНИЙ ПРЕДЕ	П ИЗМЕРЕНИЙ													
Избыточное	Абсолютное													
1,5 кПа	-		1500											
7,5 кПа	-		7500											
37 кПа	37 кПа		3701											
187 кПа	187 кПа		1872											
690 кПа	690 кПа		6902											
2 МПа	2 МПа		2003											
7 МПа	7 МПа		7003											
20 МПа	-		2004											
МАТЕРИАЛ МЕМ	БРАНЫ/заполняк	ощая	жидкост											
сталь/силиконовое масло 11														
МАТЕРИАЛ ШТУL	•													
	нерж	авею	щая стал	ь 316L	S									
УПЛОТНЕНИЕ														
тол	ько для механич	ески		фторка цинени		F								
	NBR (бута ько для механич	диен	н-нитриль	ный ка	аучук)	N								
-	EPDM (этил					E								
тол	ько для механич	ески	х присоед	цинени	ЙĎIŃ	E								
	Ć	без у	плотнени	я (стан	ідарт)	W								
ОСНОВНАЯ ПОГР	ЕШНОСТЬ													
0,075% (для датчиков с ВПИ от 7,5 до 7000 кПа) Z														
0,1% (для да	тчиков с ВПИ 1,	5 кПа	а и датчи	ков аб	с. давл	пения)	Α							
ДИСПЛЕЙ														
нет								0						
							есть	1						
ЭЛЕКТРИЧЕСКОЕ	ПРИСОЕДИНЕН	ИΕ												
				кабел	ьный в	вод 1/	2" – 14	4 NPT	N					
						ный вв								

^{*} Конфигурация клапанного блока оформляется отдельной строкой заказа по технической спецификации на клапанный блок.

^{**} Датчик поставляется в сборе с клапанным блоком. После установки производится проверка на герметичность.


Продолжение приложения А

ВЫХОДНОЙ СИГНАЛ								
-11	ток 420 мА / HART	Н						
	420 мА / HART / 0Ex ia IIC T4 Ga X	I						
	420 MA / HART / 1Ex d IIC T5, T6 Gb X	Р						
МЕХАНИЧЕСКОЕ ПРИСОЕДИНЕНИЕ								
	1/2" – 14 NPT внутренняя резьба (станда	2						
	M20x1,5 EN 837 (с адаптер							
	M20x1,5 DIN 3852 (с адаптер							
	G1/2" EN 837 (с адаптер							
	G1/2" DIN 3852 (с адаптер	ом)	8					
КЛАПАННЫЙ БЛОК*								
		0						
	В комплекте с клапанны	1						
	С установленным клапанным блоком**							
КРЕПЕЖНЫЕ ПРИСПОСОБЛЕНИЯ								
без крепежа в комплекте								
кронштейн на трубу								
ИСПОЛНЕНИЕ								
стандартное								
специальное								

Пример записи при заказе: AMZ 5450-G-7003-11-S-F-A-1-N-H-2-1-1-00.
* Конфигурация клапанного блока оформляется отдельной строкой заказа по технической спецификации на клапанный блок.

^{**} Датчик поставляется в сборе с клапанным блоком. После установки производится проверка на герметичность.

ПРИЛОЖЕНИЕ Б Габаритные размеры корпуса

* Размер для справок (зависит от размера X)

AMZ 5050:

Единицы измерений			кΠ	МПа			
ВПИ	1,5	7,5	37	187	690	2	7
Размер Х, мм	54				55	56	57

Рисунок Б.1 — Габаритные размеры корпуса АМZ 5050 (1- заглушка; 2- штуцера для входного давления)

Для крепления прибора к вертикальной поверхности или трубе в комплект поставки может входить прямой или угловой кронштейн (опция при заказе), рисунок Б.2 и Б.3.

Продолжение приложения Б

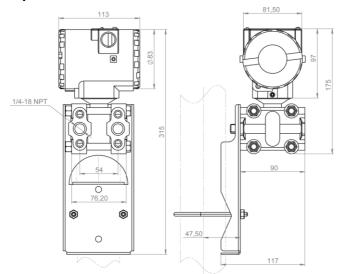


Рисунок Б.2 – Крепление АМZ 5050 к трубе 2" на прямом кронштейне

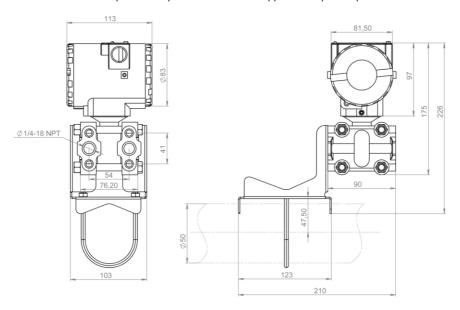


Рисунок Б.3 – Крепление АМZ 5050 к трубе 2" на угловом кронштейне

Продолжение приложения Б

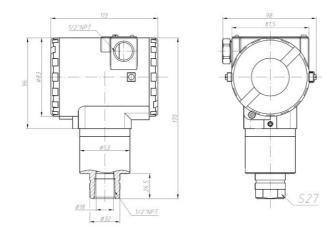


Рисунок Б.4 – Габаритные размеры датчика АМZ 5450

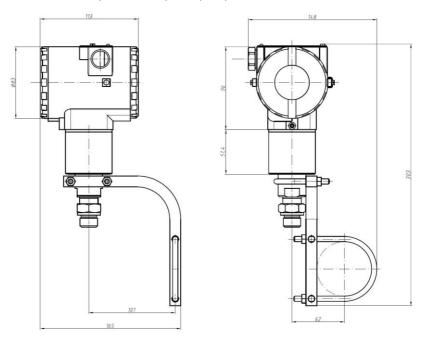


Рисунок Б.5 – Крепление АМZ 5450 к трубе 2" на угловом кронштейне

ПРИЛОЖЕНИЕ В Электрические подключения

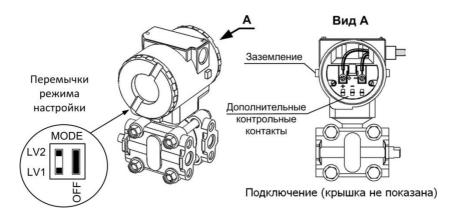
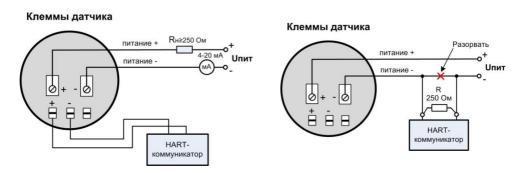
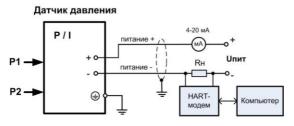
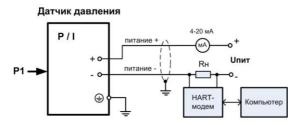


Рисунок В.1 – Расположение контактов на клеммной колодке и переключателей режима настройки под крышками

Взрывобезопасная зона

Для настройки прибора подключается HART-коммуникатор в соответствии с рисунком B.2


Рисунок В.2 – Варианты подключение HART-коммуникатора

Для общепромышленного применения прибора во взрывобезопасной зоне подключается HART-модем по схемам, рисунок В.3.

2-проводная линия (вых. сигнал - ток и HART)

a) AMZ 5050

2-проводная линия (вых. сигнал - ток и HART)

6) AMZ 5450/5050

Рисунок В.3 – Электрические схемы подключения

Подключение нескольких приборов к одной цепи

Можно объединить до 15 приборов в одной цепи. Для работы многоканального режима каждому прибору должен быть установлен индивидуальный адрес связи — числовое значения от 1 до 15 (начальный адрес при изготовлении — 0).

Выполняется смена адреса программно по HART-протоколу, при помощи автономного HART-коммуникатора или HART-модема с ПК (см. Приложение Д).

При активации многоканального режима связи у прибора отключается аналоговый выходной сигнал, — его значение фиксируется на уровне 4 мА. Измеренные значения в цифровом виде передаются в компьютер, при этом приборы последовательно опрашиваются. Подключение группы приборов к одной цепи питания показано на рисунке В.4.

Рисунок В.4 – Подключение нескольких приборов AMZ 5050/AMZ 5450 к одной линии питания (Р1–Р4 – давление измеряемой среды, Rн≥250 Ом)

Подключение HART-коммуникатора

Типовое подключение коммуникатора к цепи HART приведено на рисунке В.5, дополнительные возможные варианты подключения показаны на рисунках В.6–В.8.

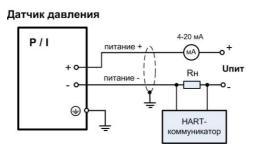


Рисунок В.5 – Подключение HART-коммуникатора к приборам AMZ 5050/5450

Клеммы датчика

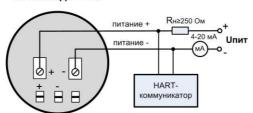


Рисунок В.6 – Способ подключения HART-коммуникатора непосредственно к коммуникационным клеммам прибора

Клеммы датчика

Рисунок В.7 – Подключение HART-коммуникатора к дополнительным контрольным контактам корпуса прибора

Клеммы датчика

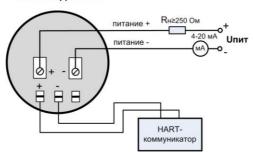


Рисунок В.8 – Подключение HART-коммуникатора с временно устанавливаемым на его входе дополнительным резистором нагрузки (R) сопротивлением 250 Ом

Электрическое питание прибора (Uпит) общепромышленного и взрывозащищенного исполнения (вида «взрывонепроницаемая оболочка») осуществляется от источника питания постоянного тока напряжением от 17 до 45 В. При этом допускаемое сопротивление нагрузки (Rh) для выходного сигнала 4—20 мА должно быть в пределах от 250...1650 Ом (рисунок В.9).

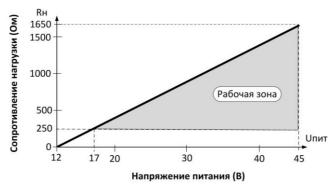


Рисунок В.9 – График ограничений по выбору сопротивления нагрузки (Rн), в зависимости от напряжения питания

Функция выходного сигнала

В процессе эксплуатации в прибор обеспечивает линейно-возрастающую характеристику связи выходного сигнала с измеренным давлением (рисунок В.10). Определяется текущее значение выходного тока $I_{\rm Bыx}$ из формулы

$$I_{\text{Bbix}}[\text{MA}] = 4[\text{MA}] + 16[\text{MA}] \times \frac{P - P_{\text{H}\Pi \text{H}}}{P_{\text{B}\Pi \text{H}} - P_{\text{H}\Pi \text{H}}},$$
 (1)

где *Р* – разность давлений измеряемой среды между входами P1, P2;

Рнпи – давление нижнего предела измерений;

 $P_{\text{ВПИ}}$ – давление верхнего предела измерений.

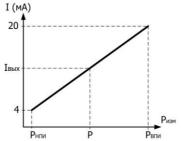


Рисунок В.10 – Характеристики изменения выходного сигнала (тока) от входного давления (Р)

ПРИЛОЖЕНИЕ Г Перечень изменяемых параметров

	сты меню на ,	дисплее	Назначение выполняемых функций			
tOP RANGE			Конфигурирование и установка значений:			
	rAnG UNIT		Переключается пункт меню кнопкой «S», выбо кнопка «Z»:			
		Unit kPa	– выбор единицы измерений (таблица Г.1, кн. «Z»)			
	↑LRV		– установка нижнего предела измерений (НПИ			
	↓LRV		Стрелка вверх/вниз указывает направление измен ний значений при активации кнопки «S»			
	↑URV		– установка верхнего предела измерений (ВПИ			
	↓URV		Стрелка вверх/вниз указывает направление изменоний значений при активации кнопки «S»			
	↑SPAN		– установка диапазона измерений (разность межд			
	↓SPAN		ВПИ и НПИ). Стрелка указывает направление изм ний значений при активации кнопки «S»			
	LRVP		 установка НПИ с опорным давлением 			
	URVP		– установка ВПИ с опорным давлением			
	↑DAMP		– установка времени демпфирования (значения от			
	↓DAMP		до 128 с), настройка времени усреднения выходно сигнала. Стрелка указывает направление изменени значений при активации кнопки «S»			
	rAnG RESET		Сброс всех настроек на заводские			
	rAnG SAVE		Сохранение измененных настроек			
	rAnG ESC		Выход в главное меню без изменения настроек			
OP TRIM			Подстройка параметров*:			
	PSWD		– ввод пароля (заводская установка пароля – «1»)			
	ZTRIM		– коррекция значения нулевого давления			
	↑LTRIM		– подстройка НПИ (измеренное значение давления			
	↓LTRIM		НПИ). Стрелка указывает направление изменений значений кн. «S»			
	↑UTRIM		– подстройка ВПИ (измеренное значение давления			
	↓UTRIM		ВПИ). Стрелка указывает направление изменений значений кн. «S»			
	triin RESET		Сброс всех настроек на заводские			
	triin SAVE		Сохранение измененных настроек			
	triin ESC		Выход в главное меню			
OP DISP			Отображение значения на дисплее*:			
	Lcd LCD1		Первый экран (отображается 3 с):			
		Lcd1 PR	– давление в единицах измерения			
		Lcd1 PR%	– давление в % от диапазона			
		Lcd1 CURR	– выходной ток в мА			
		Lcd1 TEMP	– температура в °C			
		Lcd1 ESC	Выход из подменю экрана 1			

^{*} Переключается пункт меню кнопкой «Z», выбор кнопкой «S».

Пушсти мошо на	писппоо			
Пункты меню на дисплее		Назначение выполняемых функций		
Lcd LCD2		Второй экран (отображается 3 с):		
	Lcd2 PR	– давление в единицах измерения		
	Lcd2 PR%	– давление в % от диапазона		
	Lcd2 CURR	– выходной ток в мA		
	Lcd2 TEMP	– температура в °C		
	Lcd2 NULL	– нулевое значение		
	Lcd2 ESC	Выход из подменю экрана 2		
Lcd SAVE		Сохранение измененных настроек		
Lcd ESC		Выход в главное меню без изменения настроек		
top alar		Конфигурирование работы датчика при аварийном режиме		
ALAR Mode		Установка значений выходного сигнала в аварийном режиме:		
	odE LO	– выходной сигнал фиксируется на уровне 3,6 мА;		
	odE HI	– выходной сигнал фиксируется на уровне 21 мА;		
	odE LAST	 выходной сигнал фиксируется на уровне предше- ствующем аварийному состоянию; 		
	odE USER	— выходной сигнал фиксируется на выбранном пользователем уровне (см. параметры $↑$ Ia и $↓$ Ia).		
↑Ia		Установка значения выходного тока в аварийном ре-		
↓Ia		жиме (в миллиамперах). Стрелка указывает направление изменений значений кнопкой «S»		
ALAR SAVE		Сохранение измененных настроек		
ALAR ESC		Выход в главное меню без изменения настроек		
tOP ESC		Переход в рабочий режим		

Единицы измерения (UNIT)

Прибор обеспечивает представление информации о физических величинах в единицах измерений, указанных в таблице $\Gamma.1$ (выбираются кнопкой «Z»).

Таблица Г.1 – Отображаемые на дисплее единицы измерений

Вид на дисплее	Описание единиц измерений		
Torr	торр (1 торр ≈ 133,3 Па)		
inH ₂ O	дюйм водного столба (при 20 °C)		
inHg	дюйм ртутного столба (при 0 °C)		
ftH2O	фут водного столба (при 20 °C)		
mmH₂O	миллиметр водного столба (при 20 °C)		
mmHg	миллиметр ртутного столба (при 0 °C)		
PSI	фунт на квадратный дюйм		
bar	бар		
mbar	мбар		
g/cm ²	Γ/CM ²		
kg/cm ²	кг/см ²		
Pa	Па, паскаль		
kPa	кПа, килопаскаль		
atm	атмосфера		
ESC	пункт для выхода из меню (активация кнопкой «S»)		

ПРИЛОЖЕНИЕ Д HART-коммуникатор модели 375

Общая информация

Портативный коммуникатора модели 375 может работать автономно до 10 часов при температурах окружающей среды от -10 до +50 °C, в том числе во взрывоопасных зонах. Типовые схемы соединений для работы приведены в Приложении В, при этом полярность подключения может быть любой.

Внешний вид лицевой панели коммуникатора показан на рисунке Д.1.

Рисунок Д.1 – Назначение элементов управления коммуникатора модели 375

Включение коммуникатора производится удержанием нажатой около 2 с кнопки

Коммуникатором можно управлять нажатием кнопок или при помощи стилуса на сенсорном дисплее. Назначение основных элементов управления указано в таблице Д.1.

Таблица Д.1 – Элементы управления коммуникатора

Вид кнопки	Название	Описание действий		
0	On/off (Вкл./откл.)	Включение и отключение питания ком муникатора, а также перевод его в режим ожидания		
A	Backlight (Подсветка)	Регулировка яркости подсветки дисплея (переключаются 4 уровня)		
Bksp Delete Page Dn	Bksp, Delete, Page Up, Page Dn	Навигационные клавиши для перемещения по меню приложений (выбора), открытия и выхода из элементов меню		
4	Enter (Ввод)	Команда выполнить выбранную опера- цию и завершить редактирование, от- крытие элементов из главного меню или из меню Settings (Параметры) и для вы- бора любой подсвеченной кнопки		
	Tab (Табуляция)	Перемещение по кнопкам и полям окна для выбора средства управления		
f	Function (Функция)	Включение альтернативной функциональности управляющих кнопок		
1 ABC 2 Pasts	Алфавитно- цифровые клавиши	Ввод данных (цифр, букв и знаков – при многократном нажатии, до появлении необходимой буквы или цифры) или выполнение функций, указанных на клавишах		

Функциональные возможности

После подключения к контролируемому прибору и включения HART-коммуникатора, на его дисплее появится основное меню с приложением HART, используемым по умолчанию.

HART-коммуникатор позволяет настраивать следующие параметры:

- НПИ;
- ВПИ;
- время демпфирования;
- единицы измерений.

ПРИЛОЖЕНИЕ Ж Параметры взрывозащищенности

Общие сведения

Модели AMZ 5450 и AMZ 5050 могут использоваться для измерения давления взрывоопасных сред. Они обеспечивают следующие виды взрывозащиты:

- вид «взрывонепроницаемая оболочка» (Ex d) обеспечивается помещением электрических частей во взрывонепроницаемую оболочку (по ГОСТ Р 51330.10), имеющую высокую степень механической прочности, а также помещением электрических частей (чувствительного сенсора с выводными проводами) в оболочку с видом защиты «специальной» (по ГОСТ 22782.3). Это исключает передачу взрыва внутри корпуса в окружающую взрывоопасную среду.
- вид «искробезопасная электрическая цепь» (Ex i) для взрывоопасных смесей подгруппы IIC по ГОСТ Р 51330.11 обеспечивается за счет выполнения конструкции в соответствии с требованиями ГОСТ 22782.5, а также ограничения тока и напряжения в электрических цепях до искробезопасных значений.

Электропитание приборов выполняется от искробезопасных цепей барьеров (блоков питания), размещенных вне взрывоопасных зон. Эти устройства должны иметь сертификат с видом взрывозащиты «искробезопасная электрическая цепь» «ia» с уровнем взрывозащиты для соответствующих взрывоопасных смесей.

Подключение

Электрическое питание изделий взрывозащищенного исполнения осуществляется от искробезопасных цепей барьеров (блоков), имеющих вид взрывозащиты «искробезопасная электрическая цепь» с уровнем взрывозащиты искробезопасной электрической цепи «ia» для взрывобезопасных смесей подгруппы IIC по ГОСТ Р 51330.11 и пропускающих НАRТ-сигнал, при этом максимальное выходное напряжение барьеров $U_0 \le 28$ В, а максимальный выходной ток $I_0 \le 93$ мА.

Схема подключения для обеспечения взрывозащиты приведена на рисунке Ж.1.

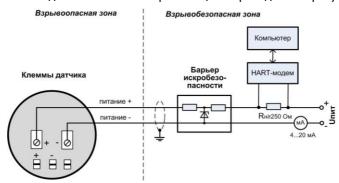


Рисунок Ж.1 – Подключение HART-модема к приборам AMZ 5050/5450 взрывозащищенного исполнения (Rн – сопротивление нагрузки)

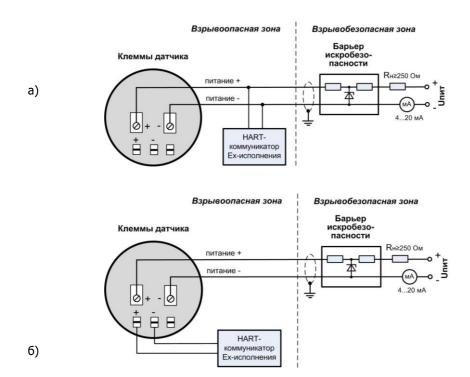


Рисунок Ж.2 – Подключение HART-коммуникатора к приборам AMZ 5050/5450:

- а) непосредственно к коммуникационным клеммам;
- б) к дополнительным контрольным контактам корпуса

Для заметок	
	_
	—
	—
	—
	_
	—
	_
	_
	—
	_
	_

